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Abstract 

The theorem of this paper is a generalization of a result of Babu et al. [1], as   
well as some other theorems in the literature. 

1. Introduction 

In a recent paper [1], the authors proved a fixed point theorem for 
four maps satisfying a generalized weakly contractive condition. In this 
paper, a substantial generalization of their result is established. 

Let TSBA ,,,  be selfmaps of a metric space X. These maps will be 

called generalized weakly contractive, if 

( )( ) ( )( ) ( )( ) ,,allfor,,,, XyxByAxdyxmvByAxdv ∈ϕ−/≤/  (1) 



B. E. RHOADES  84

where 

( ) { ( ) ( ) ( ),,,,,,max:, TyBydSxAxdByAxdyxm =  

( ) ( )[ ] },2,, SxBydByAxd +  (2) 

and where [ ) [ ) vv /∞→∞/ ,,0,0:  is continuous, monotone increasing, and 

satisfies ( ) ttv </  for each ,0>t  and [ ) [ )∞→∞ϕ ,0,0:  is a lower 

semicontinuous function with ( ) 0=ϕ t  if and only if .0=t  

A pair of maps SA,  is said to be weakly compatible, if they commute 

at coincidence points. 

Theorem 1. Let TSBA ,,,  be selfmaps of a complete metric space 

( ),, dX  which satisfy ( ) ( ) ( ) ( )XSXBXTXA ⊆⊆ ,  and (1). If the pairs 

( )SA,  and ( )TB,  are weakly compatible and one of the ranges 

( ) ( ) ( ) ( )XTXSXBXA ,,,  is closed, then TSBA ,,,  have a unique 

common fixed point. 

Proof. For any ,0 Xx ∈  there exist an Xx ∈1  such that 

.: 100 TxAxy ==  Similarly, there exists a point Xx ∈2  such that 

.: 211 SxBxy ==  In general, { }ny  is defined by ,1222 +== nnn TxAxy  

.221222 +++ == nnn SxBxy  

From (1), 

( ( )) ( ( )) ( ( )).,,, 122122122 +++ ϕ−/≤/ nnnnnn BxAxdxxmvBxAxdv  

From (2), 

( ) { ( ) ( ) ( ),,,,,,max, 121222122122 ++++ = nnnnnnnn TxBxdSxAxdBxAxdxxm  

[ ( ) ( )] }2,, 212122 nnnn SxBxdTxAxd ++ +  

 { ( ) ( ) ( ),,,,,,max 122122122 +−−= nnnnnn yydyydyyd  

[ ( )] }2,0 1212 −++ nn yyd  

 { ( ) ( )},,,,max 122122 +−= nnnn yydyyd  
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and 

( ( )) ( { ( ) ( )})122122122 ,,,max, −++ /≤/ nnnnnn yydyydvyydv  

 ( ( ))., 122 +ϕ− nn yyd  

In a similar manner, it can be shown that 

( ( )) ( { ( ) ( )})nnnnnn yydyydvyydv 21222122212 ,,,max, +++++ /≤/  

 ( ( ))., 2212 ++ϕ− nn yyd  

Thus, for all n, 

( ( )) ( { ( ) ( )}) ( ( )).,,,,max, 1111 +−++ ϕ−/≤/ nnnnnnnn yydyydyydvyydv  (3) 

If there exists an n for which ( ) ( ),,, 11 +− < nnnn yydyyd  it follows 

from (3) that 

( ( )) ( ( )) ( ( )) ( ( )),,,,, 1111 ++++ /<ϕ−/≤/ nnnnnnnn yydvyydyydvyydv  

a contradiction. 

Therefore, for all n, we have 

( ) ( ),,, 11 nnnn yydyyd −+ ≤  

and { ( )}1, +nn yyd  is a positive nonincreasing sequence and therefore 

converges to a limit .0≥a  

Suppose that .0>a  Then, taking the limit of (3) as ,∞→n  one 
obtains 

( ) ( ) ( ),aavav ϕ−/≤/  

a contradiction. Therefore .0=a  

We wish to show that { }ny  is a Cauchy sequence. It will be sufficient 

to show that { }ny2  is Cauchy. Suppose that it is not Cauchy. Then, there 

exists an 0>  and two subsequences of even integers ( ){ }km  and ( ){ },kn  

such that ( ) ( ) kkmkn 2>>  and 
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( ( ) ( ) ) ( ( ) ( ) ) .,and, 2  <≥ −knkmknkm yydyyd  

Then 

( ( ) ( ) )knkm yyd ,≤  

         ( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) )knknkmkmknkm yydyydyyd ,,, 1111 +−+− ++≤  

 ( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) ).,2,2, 11 knknkmkmknkm yydyydyyd +− ++≤  

Taking the limit as ∞→k  yields 

( ( ) ( ) ) .,lim 11 =+− knkmk
yyd  

Also, 

( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) )11 ,,, ++ +≤ knknknkmknkm yydyydyyd  

 ( ( ) ( ) ) ( ( ) ( ) ).,2, 1++≤ knknknkm yydyyd  

Taking the limit as ∞→k  yields 

( ( ) ( ) ) .,lim 1 =+knkmk
yyd  

Using (1), 

( ( ( ) ( ) )) ( ( ( ) ( ) ))11 ,, ++ /=/ knkmknkm BxAxdvyydv  

 ( ( ( ) ( ) )) ( ( ( ) ( ) )).,, 11 ++ ϕ−/≤ knkmknkm BxAxdxxmv  (4) 

From (2), 

( ( ) ( ) )1, +knkm xxm  

{ ( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) ),,,,,,max 111 +++= knknkmkmknkm TxBxdSxAxdBxAxd  

 [ ( ( ) ( ) ) ( ( ) ( ) )] }2,, 11 kmknknkm SxBxdTxAxd ++ +  

 { ( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) ),,,,,,max 111 knknkmkmknkm yydyydyyd +−+=  

[ ( ( ) ( ) ) ( ( ) ( ) )] }.2,, 11 −++ kmknknkm yydyyd  
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Substituting into (4) and taking the limit as ,∞→k  one obtains 

( ) ( ) ( ), ϕ−/≤/ vv  

a contradiction. Therefore { }ny  is Cauchy, hence convergent, to some 

point .Xz ∈  Thus we have 

,limlim 122 zTxAx nnnn
== +  

and 

.limlim 2212 zTxBx nnnn
== ++  

Suppose that ( )XS  is closed. Then, there exists a Xu ∈  such that 

.Suz =  

We claim that .zAu =  Suppose not. Then, from (1), 

( ( )) ( ( )) ( ( )).,,, 121212 +++ ϕ−/≤/ nnn BxAudxumvBxAudv  

From (2), 

( ) { ( ) ( ) ( ),,,,,,max, 12121212 ++++ = nnnn BxTxdAuSudTxSudxum  

[ ( ) ( )] }.2,, 1212 AuTxdBxSud nn ++ +  

Substituting and taking the limit as ∞→n  gives 

( )( ) ( )( ) ( )( ),,,, zAudAuzdvzAudv ϕ−/≤/  

a contradiction. Therefore, SuAuz ==  and u is a coincidence point of A 
and S. 

Since A and S are weakly compatible, .SzSAuASuAz ===  We 
shall now show that z is a common fixed point of A and S. If ,zAz ≠  
then, from (1), 

( ( )) ( ( )) ( ( )).,,, 121212 +++ ϕ−/≤/ nnn BxAzdxzmvBxAzdv  

Taking the limit as ∞→n  yields 

( )( ) ( )( ) ( )( ),,,, zAzdzAzdvzAzdv ϕ−/≤/  
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a contradiction. Therefore .SzAzz ==  

Since ( ) ( ),XTXA ⊆  there is a point Xv ∈  such that .TvAz =  Thus 

.zSzTvAz ===  

Suppose that .zBv ≠  Then, from (1), 

( )( ) ( )( ) ( ( )( )) ( )( ),,,,, BvAzdvzmdvBvAzdvBvzdv ϕ−/≤/=/  

which leads to 

( )( ) ( )( ) ( )( ),,,, BvzdBvzdvBvzdv ϕ−/≤/  

which is a contradiction. Therefore .zTvBv ==  Since the maps are 
weakly compatible, ,TzTBvBTvBz ===  and z is a coincidence point 

for T and B. 

Suppose that .zBz ≠  Then, from (1), 

( )( ) ( )( ) ( )( ) ( )( ),,,,, BzAzdzzmvBzAzdvBzzdv ϕ−/≤/=/  

which leads to 

( )( ) ( )( ) ( )( ),,,, BzzdBzzdvBzzdv ϕ−/≤/  

a contradiction. Therefore ,zTzSzBzAz ====  and z is a common 

fixed point. 

To show uniqueness, suppose that w is also a common fixed point, 
with .wz ≠  Using (1), 

( )( ) ( )( ) ( )( ) ( )( ),,,,, BwAzdwszmvBwAzdvwzdv ϕ−/≤/=/  

which leads to 

( )( ) ( )( ) ( )( ),,,, wzdwzdvwzdv ϕ−/≤/  

a contradiction. Therefore, the common fixed point is unique. 

The proofs, assuming that ( ) ( ),, XSXA  or ( )XT  is closed are similar. 
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Special cases of Theorem 1 appear in the references listed in the 
bibliography. 
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